Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-Benzyl-N-ethylmorpholinium chloride

Yan-Jiang Bian

Faculty of Chemistry and Material Science, Langfang Teachers' College, Hebei, Langfang 065000, People's Republic of China Correspondence e-mail: biany@126.com

Received 2 December 2008; accepted 9 December 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.090; data-to-parameter ratio = 15.5.

In the crystal structure of the title compound, $C_{13}H_{20}NO^+\cdot Cl^-$, the morpholine ring is in a chair conformation and the molecules are linked by weak intermolecular $C-H\cdot\cdot\cdot Cl$ hydrogen bonding.

Related literature

For details of the importance of quaternary morpholine halides see: Kim *et al.* (2005, 2006).

Experimental

Crystal data	
$C_{13}H_{20}NO^+ \cdot Cl^-$	
$M_r = 241.75$	
Monoclinic, $P2_1/c$	
a = 13.179 (3) Å	

b = 8.4176 (17) Å c = 12.255 (3) Å $\beta = 108.48 (3)^{\circ}$ $V = 1289.5 (4) \text{ Å}^{3}$

Z = 4Mo $K\alpha$ radiation $\mu = 0.28 \text{ mm}^{-1}$

Data collection

Rigaku Saturn CCD area-detector
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC,
2005)
$T_{\rm min} = 0.957, T_{\rm max} = 0.984$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.090$ S = 1.072266 reflections 2017 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$

7151 measured reflections 2266 independent reflections

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - H1B \cdots Cl1^i$	0.99	2.74	3.4724 (16)	131
$C5-H5B\cdots Cl1^{ii}$	0.99	2.61	3.5500 (16)	158
$C11 - H11 \cdot \cdot \cdot Cl1$	0.95	2.66	3.5501 (16)	156
$C12 - H12B \cdots Cl1^{iii}$	0.99	2.61	3.5062 (16)	151

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) x, $-y + \frac{5}{2}$, $z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXS97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2129).

References

Kim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem. 16, 1315–1317.

Kim, K. S., Park, S. Y., Yeon, S. H. & Lee, H. (2005). *Electrochim. Acta*, 50, 5673–5678.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

T = 113 (2) K $0.16 \times 0.16 \times 0.06 \text{ mm}$ supplementary materials

Acta Cryst. (2009). E65, o105 [doi:10.1107/S1600536808041846]

N-Benzyl-N-ethylmorpholinium chloride

Y.-J. Bian

Comment

Quaternary morpholine halides are valuable precursors for the preparation of ionic liquids by ion metathesis (Kim *et al.*,2005). Ionic liquids based on the morpholinium cation are favored becaused of their low cost, easy synthesis, and electrochemical stability (Kim *et al.*,2006). Here we report a new structure of this class of compounds.

In the crystal structure the morpholine ring adopts a chair conformation (Fig. 1). The cations and anions are connected via weak C—H…Cl hydrogen bonding into a three-dimensional network (Tab 1).

Experimental

Benzyl chloride(0.12 mol) was added to a solution of 4-ethylmorpholine(0.1 mol) in 20 ml of acetonitrile under stirring. The mixture was stirred at 60 °C for 5 h. The solvent was removed under reduced pressure. The remaining brownish, viscous liquid crystallized slowly at room temperature in a mixture of ethanol and acetone [1/20(v/v)]. Single-crystals were obtained by slow evaporation of the solvewnt from a solution in a mixture of ethanol and acetone [1/20(v/v)].

Refinement

The H atoms were positioned with idealized geometry and were refinement isotropic using a riding model with C–H = 0.96–0.97 Å and U_{iso} (H) = 1.2 U_{eq} (C) for aromatic and methylene H atoms as well as U_{iso} (H) = 1.5 U_{eq} (C) for methyl H atoms.

Figures

Fig. 1. Crystal structure of the title compound with the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.

N-Benzyl-N-ethylmorpholinium chloride

Crystal data	
$C_{13}H_{20}NO^+ \cdot CI^-$	$F_{000} = 520$
$M_r = 241.75$	$D_{\rm x} = 1.245 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 13.179 (3) Å	Cell parameters from 3736 reflections

b = 8.4176 (17) Å	$\theta = 1.6 - 27.9^{\circ}$
c = 12.255 (3) Å	$\mu = 0.28 \text{ mm}^{-1}$
$\beta = 108.48 \ (3)^{\circ}$	T = 113 (2) K
$V = 1289.5 (4) \text{ Å}^3$	Prism, colorless
Z = 4	$0.16 \times 0.16 \times 0.06 \text{ mm}$

Data collection

Radiation source: rotating anode 2017 reflections with $I > 2\sigma(I)$
Monochromator: confocal $R_{\rm int} = 0.031$
$T = 113(2) \text{ K}$ $\theta_{\text{max}} = 25.0^{\circ}$
ω and ϕ scans $\theta_{min} = 2.9^{\circ}$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) $h = -15 \rightarrow 14$
$T_{\min} = 0.957, T_{\max} = 0.984$ $k = -9 \rightarrow 10$
7151 measured reflections $l = -7 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.090$	$w = 1/[\sigma^2(F_o^2) + (0.0545P)^2 + 0.1492P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.002$
2266 reflections	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
146 parameters	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

y

x

Ζ

 $U_{\rm iso}*/U_{\rm eq}$

Cl1	0.31149 (3)	1.03231 (4)	0.23458 (3)	0.02272 (14)
01	0.37595 (8)	0.96775 (12)	0.89939 (8)	0.0230 (3)
N1	0.30801 (9)	0.93219 (13)	0.64941 (10)	0.0165 (3)
C1	0.41986 (11)	0.89933 (18)	0.72853 (12)	0.0199 (3)
H1A	0.4258	0.7859	0.7509	0.024*
H1B	0.4718	0.9204	0.6870	0.024*
C2	0.44732 (12)	1.00099 (18)	0.83543 (12)	0.0220 (3)
H2A	0.5218	0.9794	0.8838	0.026*
H2B	0.4420	1.1146	0.8135	0.026*
C3	0.27034 (12)	1.00809 (18)	0.83116 (13)	0.0227 (3)
НЗА	0.2674	1.1225	0.8116	0.027*
H3B	0.2208	0.9892	0.8760	0.027*
C4	0.23423 (11)	0.91112 (18)	0.72105 (12)	0.0201 (3)
H4A	0.2319	0.7974	0.7407	0.024*
H4B	0.1610	0.9438	0.6752	0.024*
C5	0.28285 (11)	0.80630 (17)	0.55463 (12)	0.0198 (3)
H5A	0.3283	0.8261	0.5054	0.024*
H5B	0.3025	0.7008	0.5908	0.024*
C6	0.16760 (11)	0.80131 (16)	0.47930 (12)	0.0182 (3)
C7	0.09501 (12)	0.70572 (17)	0.51050 (13)	0.0224 (3)
H7	0.1174	0.6504	0.5817	0.027*
C8	-0.00926 (12)	0.69048 (18)	0.43888 (13)	0.0260 (4)
H8	-0.0586	0.6273	0.4620	0.031*
C9	-0.04183 (12)	0.76705 (18)	0.33380 (13)	0.0263 (4)
Н9	-0.1128	0.7536	0.2834	0.032*
C10	0.02947 (12)	0.86372 (19)	0.30209 (13)	0.0268 (4)
H10	0.0068	0.9180	0.2304	0.032*
C11	0.13372 (12)	0.88136 (18)	0.37469 (12)	0.0224 (3)
H11	0.1820	0.9483	0.3529	0.027*
C12	0.29561 (12)	1.09797 (17)	0.59839 (12)	0.0227 (3)
H12A	0.2232	1.1076	0.5417	0.027*
H12B	0.3008	1.1757	0.6606	0.027*
C13	0.37708 (14)	1.1417 (2)	0.53976 (13)	0.0328 (4)
H13A	0.4493	1.1329	0.5950	0.049*
H13B	0.3646	1.2512	0.5113	0.049*
H13C	0.3700	1.0695	0.4751	0.049*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.0235 (2)	0.0170 (2)	0.0296 (2)	-0.00200 (13)	0.01123 (17)	-0.00037 (14)
O1	0.0241 (6)	0.0242 (6)	0.0192 (5)	-0.0001 (4)	0.0046 (5)	0.0020 (4)
N1	0.0168 (6)	0.0128 (6)	0.0188 (6)	-0.0008 (5)	0.0043 (5)	-0.0006 (5)
C1	0.0151 (7)	0.0203 (8)	0.0219 (7)	0.0008 (6)	0.0023 (6)	0.0000 (6)
C2	0.0194 (7)	0.0230 (8)	0.0213 (7)	-0.0024 (6)	0.0035 (6)	-0.0002 (6)
C3	0.0225 (8)	0.0234 (8)	0.0227 (8)	-0.0002 (6)	0.0080 (6)	-0.0017 (6)
C4	0.0178 (7)	0.0189 (8)	0.0250 (8)	-0.0014 (6)	0.0086 (6)	-0.0012 (6)
C5	0.0205 (7)	0.0140 (7)	0.0243 (7)	-0.0012 (6)	0.0065 (6)	-0.0044 (6)

supplementary materials

C6	0.0195 (7)	0.0127 (7)	0.0216 (7)	0	0000 (6)	0.0054 (6)	-0.0052(6)
C7	0.0266 (8)	0.0127(7)	0.0210(7) 0.0247(8)	-	-0.0027(6)	0.0054(0) 0.0053(7)	0.0001 (6)
C8	0.0223 (8)	0.0137(8)	0.0217(0)	_	-0.0027 (6)	0.0033(7) 0.0082(7)	-0.0017(7)
C9	0.0223(0) 0.0203(7)	0.0208 (8)	0.0302(9) 0.0325(8)	0	0.0044 (0)	0.0002(7)	-0.0042(7)
C10	0.0205 (7)	0.0251 (9)	0.0323(0) 0.0221(8)	0	0.0022(0)	0.0007(7) 0.0034(7)	0.0010(6)
C11	0.0258 (8)	0.0201 (9)	0.0221(0) 0.0226(8)	-	-0.0018 (6)	0.0034(7) 0.0100(7)	-0.0017(6)
C12	0.0202 (8)	0.0200 (3)	0.0220(0) 0.0210(7)	_	-0.0014 (6)	0.0100(7) 0.0020(6)	0.0017(0)
C13	0.0505(0)	0.0122(9)	0.0210(7) 0.0227(8)	_	-0.0146 (8)	0.0020(0)	0.0012(0)
015	0.0501 (10)	0.0232 ())	0.0227 (0)		0.0140 (0)	0.0100 (0)	0.0002 (7)
Geometric paran	neters (Å, °)						
O1—C3		1.4191 (18)	C5	5—H5B		0	.9900
O1—C2		1.4300 (17)	C6	6—C11		1	.391 (2)
N1—C1		1.5111 (18)	C6	6—C7		1	.393 (2)
N1—C4		1.5129 (18)	C7	7—C8		1	.382 (2)
N1—C12		1.5167 (18)	C7	7—H7		0	.9500
N1—C5		1.5290 (18)	C8	8—C9		1	.381 (2)
C1—C2		1.510 (2)	C8	8—H8		0	.9500
C1—H1A		0.9900	C9	9—C10		1	.388 (2)
C1—H1B		0.9900	C9	9—Н9		0	.9500
C2—H2A		0.9900	C1	10—C11		1	.388 (2)
C2—H2B		0.9900	C1	10—H10)	0	.9500
C3—C4		1.519 (2)	C1	11—H11		0	.9500
С3—НЗА		0.9900	C1	12—C13		1	.515 (2)
С3—Н3В		0.9900	C1	12—H12	A	0	.9900
C4—H4A		0.9900	C1	12—H12	B	0	.9900
C4—H4B		0.9900	C1	13—H13	A	0	.9800
C5—C6		1.507 (2)	C1	13—H13	В	0	.9800
С5—Н5А		0.9900	C1	13—H13	C	0	.9800
C3—O1—C2		108.83 (11)	C6	6—C5—	H5B	1	08.6
C1—N1—C4		106.37 (10)	N1	1—C5—	-H5B	1	08.6
C1—N1—C12		112.87 (11)	H5	5A—C5-	—Н5В	1	07.6
C4—N1—C12		110.00 (10)	C1	11—C6—	C7	1	19.02 (14)
C1—N1—C5		107.05 (11)	C1	11—C6—	C5	1	21.18 (13)
C4—N1—C5		109.58 (10)	C7	7—C6—	·C5	1	19.63 (13)
C12—N1—C5		110.82 (11)	C8	8—C7—	·C6	1	20.69 (14)
C2-C1-N1		111.70 (12)	C8	8—C7—	·H7	1	19.7
C2—C1—H1A		109.3	C6	6—C7—	·H7	1	19.7
N1—C1—H1A		109.3	С9	9—C8—	·C7	1	20.09 (14)
C2—C1—H1B		109.3	C9	9—C8—	H8	1	20.0
N1—C1—H1B		109.3	C7	7—C8—	H8	1	20.0
H1A—C1—H1B		107.9	C8	8—C9—	C10	1	19.78 (14)
O1—C2—C1		110.26 (12)	C8	8—C9—	·H9	1	20.1
O1—C2—H2A		109.6	C1	10—С9-	-H9	1	20.1
C1—C2—H2A		109.6	C1	11—C10	—С9	1	20.23 (14)
O1—C2—H2B		109.6	C1	11—C10	—H10	1	19.9
C1—C2—H2B		109.6	С9	9—C10–	-H10	1	19.9
H2A—C2—H2B		108.1	C1	10—C11	—C6	1	20.17 (14)
O1—C3—C4		111.57 (12)	C1	10—C11	—H11	1	19.9

01_C3_H3A	109.3	C6_C11_H11	119.9
C4-C3-H3A	109.3	C13 - C12 - N1	114.80 (13)
01 - C3 - H3B	109.3	C13 - C12 - H12A	108.6
C_{1} C_{2} H_{2} H_{2}	109.3	N1 C12 H12A	108.0
	109.5	$\mathbf{N} = \mathbf{C} 12 = \mathbf{M} 12 \mathbf{A}$	108.0
пза—Сэ—пзв	108.0	C13-C12-H12B	108.0
NI	112.00 (11)	NI—CI2—HI2B	108.6
N1—C4—H4A	109.2	H12A—C12—H12B	107.5
C3—C4—H4A	109.2	C12—C13—H13A	109.5
N1—C4—H4B	109.2	C12—C13—H13B	109.5
C3—C4—H4B	109.2	H13A—C13—H13B	109.5
H4A—C4—H4B	107.9	С12—С13—Н13С	109.5
C6—C5—N1	114.73 (11)	H13A—C13—H13C	109.5
С6—С5—Н5А	108.6	H13B—C13—H13C	109.5
N1—C5—H5A	108.6		
C4—N1—C1—C2	-54.32 (14)	N1-C5-C6-C11	95.68 (15)
C12—N1—C1—C2	66.40 (15)	N1-C5-C6-C7	-89.09 (16)
C5—N1—C1—C2	-171.41 (11)	C11—C6—C7—C8	-0.1 (2)
C3—O1—C2—C1	-62.64 (15)	C5—C6—C7—C8	-175.43 (13)
N1-C1-C2-O1	61.35 (15)	C6—C7—C8—C9	1.7 (2)
C2—O1—C3—C4	61.11 (15)	C7—C8—C9—C10	-2.2 (2)
C1—N1—C4—C3	52.26 (15)	C8—C9—C10—C11	1.1 (2)
C12—N1—C4—C3	-70.29 (15)	C9—C10—C11—C6	0.5 (2)
C5—N1—C4—C3	167.65 (12)	C7—C6—C11—C10	-1.0 (2)
O1—C3—C4—N1	-57.89 (16)	C5-C6-C11-C10	174.27 (13)
C1—N1—C5—C6	169.51 (11)	C1—N1—C12—C13	52.59 (16)
C4—N1—C5—C6	54.55 (15)	C4—N1—C12—C13	171.21 (12)
C12—N1—C5—C6	-67.02 (15)	C5—N1—C12—C13	-67.46 (15)
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C1—H1B····Cl1 ⁱ	0.99	2.74	3.4724 (16)	131
C5—H5B····Cl1 ⁱⁱ	0.99	2.61	3.5500 (16)	158
C11—H11···Cl1	0.95	2.66	3.5501 (16)	156
C12—H12B···Cl1 ⁱⁱⁱ	0.99	2.61	3.5062 (16)	151

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, -y+3/2, z+1/2; (iii) x, -y+5/2, z+1/2.

